

Biological and Environmental Research

David Thomassen, Ph.D.
Chief Scientist
Office of Biological and Environmental Research

Biological and Environmental Research Mission

- To understand complex biological, climatic, and environmental systems across spatial and temporal scales by:
 - Exploring the frontiers of genome-enabled biology
 - Discovering the physical, chemical, and biological drivers and impacts of climate change
 - Seeking the geochemical, hydrological, and biological determinants of environmental sustainability and stewardship

Biological and Environmental Research Mission drivers

- Provide the foundational science for:
 - Supporting the development of biofuels as major, secure, and sustainable national energy resources
 - Understanding potential effects
 of greenhouse gas emissions
 on Earth's climate and biosphere
 and the implications of these emissions
 for our energy future
 - Predicting the fate and transport of contaminants in the subsurface environment at DOE sites
 - Developing new tools to explore the interface of biological and physical sciences

Biological and Environmental Research Approach

- Understanding complex biological and environmental systems across many spatial and temporal scales:
 - From the sub-micron to the global
 - From individual molecules to ecosystems
 - From nanoseconds to millennia
- Integrating science by tightly coupling theory, observations, experiments, models, and simulations
- Supporting interdisciplinary research to address critical national needs
- Engaging national laboratories, universities, and the private sector to generate the best possible science

Genomics:GTL A vision of systems biology research

 Within 10 years, we will start with a plant, microbe, or microbial community of interest and in a matter of a few days for microbes or years for plants:

- Fully and accurately annotate genome or community DNA
- Identify the functions and products of the majority of genes
- Generate a working regulatory network model
- Identify the biochemical capabilities of the organisms
- Design re-engineering or control strategies in silico
- Redesign or refocus an organism for mission-critical needs
- Today, almost all of these activities take months to decades!

Genomic Science Program

Joint Genome Institute and Bioenergy

Improved feedstocks

Cellulosic Materials

- Poplar
- Maize and corn stover
- Switchgrass
- Brachypodium
- Sorghum

- Saccharomyces cerevisiae
- Zymomonas mobilis
- Thermoanaerobacter ethanolicus
- Pichia stipitis

Ethanol-producing organisms

Improved cellulose and lignin degradation

- Termite hindgut microbiota
- White rot fungus
- Clostridium thermocellum
- Saccharophagus degradans
- Acidothermus cellulolyticus

DOE Bioenergy Research Centers

Multi-institutional partnerships

Terrestrial Carbon & Carbon Sequestration Programs

- Experimental and field-oriented program to:
 - Understand processes and mechanisms controlling the exchange of CO₂ between the atmosphere and terrestrial ecosystems
 - Develop process-based models
 - Improve reliability of global carbon models
- Basic research to understand how natural processes that control carbon sequestration in terrestrial vegetation and soils can be modified to enhance sequestration

CO₂ flux towers and instrumentation

Program for Ecosystem Research

 Develop and sustain unique, long-term, and ecosystem-scale experiments manipulating temperature, precipitation, and CO₂ levels

 Quantify effects of warming on abundance of plant and animal species across their geographic ranges

 Understand mechanisms responsible for plant mortality and altered plant-insect interactions induced by climate change

 Quantify effects of warming on northward migration of plant species critical to ecosystem health

Subsurface research across scales

Integrative, multidisciplinary approaches to understanding multi-scale processes controlling contaminant mobility in the environment

Characterization and monitoring

Microbiology, geochemistry, hydrology

Modeling and high-performance computing

Molecular science, EMSL, light sources

Field Research Field scale >10³ m

Mesoscale 10^{1.5}–10³ m

Pore scale 10⁻³–10^{1.5} m

Microscopic 10⁻⁷–10⁻³ m

Molecular/nano 10⁻¹⁰–10⁻⁸ m

Scientific Discovery through Advanced Computing (SciDAC)

Leveraging the nation's intellectual investment in computational science for scientific discovery by conducting collaborative projects with the Office of Advanced Scientific Computing Research

Climate change research

 Modeling how Earth's climate will respond to physical, chemical, and biological changes produced by global alterations of the atmosphere, ocean, and land

Genomics:GTL

- Developing new methods for modeling complex biological systems
 - Molecular complexes
 - Metabolic and signaling pathways
 - Individual cells
 - Interacting organisms and ecosystems

Environmental remediation sciences

 Developing more advanced models to better understand the movement of subsurface contamination

Systems Biology Knowledgebase

A Challenge and an Opportunity...

- Seems like we've been here before
- Biology is still waiting to be transformed
- What do we want to be talking about next time we meet?
- What can we do that will
 - Really get things started?
 - Make a real difference?
 - Get the community's attention
 - Lead the biological community?

Biological and Environmental Research

Complex systems science to meet DOE mission needs in bioenergy, climate, and the environment

Thank you!

David Thomassen

<u>David.Thomassen@science.doe.gov</u>

<u>http://science.doe.gov/ober</u>

